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Chapter 7 : Integral Calculus. 

 

In this chapter, we 

consider an orthogonal 

frame of the plane. 

We call area unit (a.u.) the 

unit of the rectangle 𝑂𝐼𝐾𝐽.  

1- Notion of integral : 

1.1. Constant function : 

Let 𝑓 be a function defined on ]𝑎; 𝑏[ by 𝑓(𝑥) = 𝑐, 𝑐 > 0. We call integral of 𝒇 𝒐𝒏 

]𝒂; 𝒃[ the area of the rectangle defined by the graph of 𝑓, the 𝑥 − 𝑎𝑥𝑖𝑠, the 

straight lines with equation 𝑥 = 𝑎 and 𝑥 = 𝑏. Its value is 𝑐(𝑏 − 𝑎) a.u. 

 

 
When  𝑐 < 0, we agree to define the integral of 𝑓 on ]𝑎; 𝑏[ the opposite of the 

area below : 𝑐(𝑏 − 𝑎), it is an algebraic area, negative in that case. 

 

1.2. Stair Function : 

For a stair function (constant function by bits), the integral of 𝑓 𝑜𝑛 ]𝑎; 𝑏[ is the 

algebraic sum of the colored rectangles, counted positively if they’re above the 

𝑥 − 𝑎𝑥𝑖𝑠, negatively if they’re below the 𝑥 − 𝑎𝑥𝑖𝑠. 

We denote it ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, or ∫ 𝑓(𝑢)𝑑𝑢

𝑏

𝑎
, or ∫ 𝑓(𝑡)𝑑𝑡

𝑏

𝑎
…(notation introduced by 

Leibniz, in the XVII th century). 

 

 

1.3. Positive continuous function: 

Definition : the integral from 𝑎 to 𝑏 of 𝑓, denoted ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂
, is the area of 

the domain bounded by the graph of 𝑓, the 𝑥 − 𝑎𝑥𝑖𝑠, the straight lines with 

equation 𝑥 = 𝑎 and 𝑥 = 𝑏, in area unit. We also talk about the area under the 

curve from 𝑥 = 𝑎 to 𝑥 = 𝑏.  

 

Rqe : ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑎
= 0, because the area is the one of a segment line. 

 

 



2- First properties : 

2.1. Extended definition : 

 In the case of a negative continuous function, if 𝑎 < 𝑏, we write : ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=

∫ (−𝑓(𝑥))𝑑𝑥
𝑏

𝑎
, where −𝑓 is a positive function. 

 For a positive continuous function, and if 𝑎 ≥ 𝑏, then :  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= − ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

 

 

2.2. Chasles Law : 𝑓 is a continuous function on an interval 𝐼. For all real 

numbers 𝑎, 𝑏, 𝑐 in 𝐼, we have : 

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

+ ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑏

 

 

Csq : If 𝑓is odd ∫ 𝑓(𝑥)𝑑𝑥
𝑎

−𝑎
= 0, and if it’s even, ∫ 𝑓(𝑥)𝑑𝑥

𝑎

−𝑎
= 2 ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0
. 

 

2.3. Linearity : 𝑓and 𝑔 both continuous functions on 𝐼, and 𝜆 a real number. 

Qfor all real numbers 𝑎 and 𝑏 in 𝐼 we have : 

∫ (𝑓(𝑥) + 𝜆𝑔(𝑥)) 𝑑𝑥
𝑏

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

+ 𝜆 ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

 

 

2.4. Central point :  

𝑓 is a continuous function on 

𝐼. For all real numbers 𝑎, 𝑏 in 

𝐼, the central point of f on  

[𝒂; 𝒃] is : 

𝜇 =
1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

  

It is actually the height of the rectangle with base (𝑏 − 𝑎) which area is equal to 

the area under the curve of 𝑓 on [𝑎; 𝑏]. 

Theorem : For all real numbers 𝑎, 𝑏 in 𝐼, we can find a real number 𝑐 ∈]𝑎; 𝑏[ 

such that ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
= (𝑏 − 𝑎)𝑓(𝑐) . 

 

2.5. Inequalities : If for all real number 𝑥 of [𝑎; 𝑏] we have  𝑓(𝑥) > 𝑔(𝑥), 

then  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
> ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
. 

 

Csq : If 𝑓est bounded on [𝑎; 𝑏], 𝑖𝑒 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀, then we have : 

𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≤ 𝑀(𝑏 − 𝑎) 

 

3- Antiderivative : 

 

3.1. Definition :  

𝑓 is a function defined on an interval 𝐼. An antiderivative of 𝑓 on 𝐼 is a 

differentiable function 𝐹 such that for all real number 𝑥 of 𝐼 : 𝐹′(𝑥) = 𝑓(𝑥) . 

 

Theorem : If 𝐹 and 𝐺 are both antiderivative of 𝑓, then we can find a real 

number 𝑘 such that : 𝐹(𝑥) = 𝐺(𝑥) + 𝑘, for all 𝑥 ∈ 𝐼. 

 

Csq : Given a pair of real numbers (𝑥0; 𝑦0), there is only one antiderivative of  𝑓 

such that :  𝐹(𝑥0) = 𝑦0 (boundary condition (initial condition if 𝑡 = 0), in physics 

most of the time) 

 

Ex : Find the antiderivative of the following functions satisfying the boundary 

condition : 

(a) 𝑓(𝑥) = 𝑥, and 𝐹(0) = 2 

(b) 𝑔(𝑥) = 4𝑥 + 1 and 𝐺(1) = −3 

(c) ℎ(𝑥) =
1

𝑥2 and 𝐻(−1) = 0 

 



3.2. Antiderivative of a continuous function : 

 

Theorem : 𝑓 is a continuous function defined over 𝐼, 𝑎 ∈ 𝐼.   

Then the function defined by  

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

 

Is the unique antiderivative of 𝑓 that is equal to 0 for 𝑥 = 𝑎. 

 

Proof ! 

 𝐹 is differentiable : Indeed, for 𝑥0 ∈ 𝐼 and ℎ ≠ 0 we have :  

 

𝐹(𝑥0 + ℎ) − 𝐹(𝑥0)

ℎ
=

1

ℎ
(∫ 𝑓(𝑡)𝑑𝑡

𝑥0+ℎ 

𝑎

− ∫ 𝑓(𝑡)𝑑𝑡
𝑥0

𝑎

) =
1

ℎ
 ∫ 𝑓(𝑡)𝑑𝑡

𝑥0+ℎ

𝑥0

 

We have seen that there is a real number 𝑐 comprised between  𝑥0 and 𝑥0 + ℎ such 

that ℎ𝑓(𝑐) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥0+ℎ

𝑥0
. 

Then :  
𝐹(𝑥0+ℎ)−𝐹(𝑥0)

ℎ
=

1

ℎ
 ℎ 𝑓(𝑐) = 𝑓(𝑐). 

But, as 𝑓 is a continuous function, when ℎ tends to 0, 𝑐 tends to 𝑥0, then 𝑓(𝑐) tends 

to 𝑓(𝑥0). 

Therefore : lim
ℎ→0

𝐹(𝑥0+ℎ)−𝐹(𝑥0)

ℎ
= 𝑓(𝑥0) which is a real number. Then 𝐹  is 

differentiable at 𝑥0 and 𝐹′(𝑥0) = 𝑓(𝑥0). 

 

 𝐹 is null at 𝑎 : 𝐹(𝑎) =  ∫ 𝑓(𝑡)𝑑𝑡
𝑎

𝑎
= 0. 

 

 𝐹 is unique : Let’s imagine that 𝐺 is another antiderivative of 𝑓 null at 𝑎. Then 

we have 𝐺(𝑥) = 𝐹(𝑥) + 𝑘 for a rel number 𝑘 and for all 𝑥 in 𝐼.  

But 𝐺(𝑎) = 0 = 𝐹(𝑎) + 𝑘 = 𝑘. 

Then 𝑘 = 0 and 𝐹 = 𝐺. QED. 

 

Csq : The function 𝑥 ↦ ln 𝑥 is the antiderivative of 
1

𝑥
 that is null at 1 on ]0 ; +∞[ : 

ln 𝑥 = ∫
1

𝑡
𝑑𝑡

𝑥

1

 

4- Evaluating antiderivative : 

4.1. Usual functions : 

 

Function 𝒇 Antiderivative 𝑭 Intervall 𝑰 = ⋯ 

𝑎 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒) 𝑎𝑥 + 𝐶 ℝ 

𝑥𝑛 (𝑛 ∈ ℤ − {−1}) 
𝑥𝑛+1

𝑛 + 1
+ 𝐶 

ℝ                     𝑖𝑓 𝑛 > 0      

] − ∞ ; 0[ or ]0 ; +∞[     𝑖𝑓 𝑛 < −1 

1

√𝑥
 2√𝑥 + 𝐶 ]0 ; +∞[  

1

𝑥
 ln 𝑥 + 𝐶 ]0 ; +∞[  

𝑒𝑥 𝑒𝑥 + 𝐶 ℝ 

cos 𝑥 sin 𝑥 + 𝐶 ℝ 

sin 𝑥 − cos 𝑥 + 𝐶 ℝ 

1 + tan2 𝑥 =
1

cos2 𝑥 
 tan 𝑥 + 𝐶  ]−

𝜋

2
+ 𝑘𝜋 ;  

𝜋

2
+ 𝑘𝜋[ , 𝑘 ∈ ℤ 

 

4.2. More formulas : 

The operations on differentiable functions as well as the definition of an 

antiderivative lead to the following results : 

 If 𝐹 and 𝐺 are antiderivatives of 𝑓 and 𝑔, then 𝐹 + 𝐺 is an antiderivative of  

𝑓 + 𝑔. 



 If 𝐹 is an antiderivative of 𝑓and 𝜆 is a real number, then 𝜆𝐹 is an antiderivative 

of 𝜆𝑓. 

 

Function 𝒇 Antiderivative 𝑭 Remarks 

𝑢′𝑢𝑛 (𝑛 ∈ ℤ − {−1}) 
𝑢𝑛+1

𝑛 + 1
 

If 𝑛 < −1, only for 𝑢 never 

null on 𝐼. 

𝑢′

√𝑢
 2√𝑢 𝑢 > 0  

𝑢′

𝑢
 

ln 𝑢 

ln(−𝑢) 

𝑢 > 0 

𝑢 < 0 

𝑢′𝑒𝑢 𝑒𝑢  

𝑥 ↦ 𝑢(𝑎𝑥 + 𝑏), 𝑎 ≠ 0 𝑥 ↦
1

𝑎
𝑈(𝑎𝑥 + 𝑏), 𝑈 antiderivative of 𝑢. 

 

Example : An antiderivative of 𝑓(𝑥) = 𝑥 cos(𝑥2) is 𝐹(𝑥) =
1

2
sin(𝑥2) . 

 

5- Integral calculus : 

5.1. Link between integral and antiderivative : 

Fundamental theorem of calculus : 𝑓 is a continuous function 

on an interval 𝐼, 𝐹 an antiderivative of  𝑓 on 𝐼, 𝑎 and 𝑏 two real numbers 

belonging to 𝐼. Then we have : 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝐹(𝑏) − 𝐹(𝑎), often denoted [𝐹(𝑥)]
𝑏

𝑎
 

Ex : An antiderivative of 𝑓(𝑥) = cos 𝑥 is 𝑓(𝑥) = sin 𝑥, then : 

 ∫ cos 𝑡 𝑑𝑡
𝜋

0
= [sin 𝑡] 𝜋

0
= sin 𝜋 − sin 0 = 0. 

Ex : Evaluate the following integrals : ∫ 𝑥22

−1
𝑑𝑥, ∫ (2𝑥 + 3)32

0
𝑑𝑥,  

∫ sin 𝑥 cos2 𝑥
𝜋

2
0

𝑑𝑥, ∫
1

1+2𝑥

3

0
𝑑𝑥, ∫

2

1+2𝑥

5

−3
𝑑𝑥,  

 

5.2. Integration by parts : 

Theorem : 𝑢 and 𝑣 two derivative functions on an interval 𝐼, with 

continuous derivatives, 𝑎 and 𝑏 two real numbers in 𝐼. Then : 

∫ 𝑢(𝑡)𝑣′(𝑡)𝑑𝑡 
𝑏

𝑎

= [𝑢(𝑡) 𝑣(𝑡)]
𝑏

𝑎
− ∫ 𝑢′(𝑡)𝑣(𝑡)𝑑𝑡 

𝑏

𝑎

 

 

Proof : 𝑢𝑣 is a differentiable function and (𝑢𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′.  

So 𝑢′𝑣 = (𝑢𝑣)′ − 𝑢𝑣′. As 𝑢′𝑣, 𝑢𝑣′, and (𝑢𝑣)′ are continuous we have : 

∫ 𝑢(𝑡)𝑣′(𝑡)𝑑𝑡 
𝑏

𝑎

= ∫ (𝑢𝑣)′(𝑡) − 𝑢′(𝑡)𝑣(𝑡) 𝑑𝑡 
𝑏

𝑎

 

Using the linearity of the integral :  

∫ 𝑢(𝑡)𝑣′(𝑡)𝑑𝑡 
𝑏

𝑎

= ∫ (𝑢𝑣)′(𝑡)𝑑𝑡 − ∫ 𝑢′(𝑡)𝑣(𝑡)𝑑𝑡 
𝑏

𝑎

 
𝑏

𝑎

 

  And 𝑢𝑣 is an antiderivative of (𝑢𝑣)′ so :  

∫ 𝑢(𝑡)𝑣′(𝑡)𝑑𝑡 
𝑏

𝑎

= [𝑢(𝑡) 𝑣(𝑡)]
𝑏

𝑎
− ∫ 𝑢′(𝑡)𝑣(𝑡)𝑑𝑡 

𝑏

𝑎

 

Example : 

∫ 𝑡 𝑒𝑡  𝑑𝑡 
1

0
has the form ∫ 𝑢(𝑡)𝑣′(𝑡)𝑑𝑡 

𝑏

𝑎
 with 𝑢(𝑡) = 𝑡 and 𝑣′(𝑡) = 𝑒𝑡, the 

functions 𝑢, 𝑣, 𝑢′, 𝑣′ being continuous and 𝑢′(𝑡) = 1, 𝑣(𝑡) = 𝑒𝑡. 

Then ∫ 𝑡 𝑒𝑡 𝑑𝑡
1

0
= [𝑡𝑒𝑡] 1

0
− ∫ 𝑒𝑡𝑑𝑡 

1

0
= 𝑒 − 0 − [𝑒𝑡] 1

0
= 𝑒 − (𝑒 − 1) = 1. 

 

Ex : Evaluate the following integrals using integration by parts : 

(a) ∫ 𝑥 ln 𝑥 
𝑒

1
𝑑𝑥 

(b) ∫ ln 𝑥 
𝑒3

1
𝑑𝑥 

(c) ∫ 𝑥√𝑥 + 1
1

0
𝑑𝑥 

(d) ∫
ln 𝑥

𝑥2

𝑒

1
𝑑𝑥 

(e) ∫ 𝑒𝑥 cos 𝑥
𝜋

4
1

𝑑𝑥. (2IBP) 

 


