## L L G

Paris - Abu Dhabi
Advanced Math and Science Pilot Class
Mathematics, Grade 12

## 2014-2015

## Chapter 7 : Integral Calculus.

In this chapter, we consider an orthogonal frame of the plane.

We call area unit (a.u.) the unit of the rectangle $O I K J$.


## 1-Notion of integral:

1.1. Constant function:

Let $f$ be a function defined on $] a ; b[$ by $f(x)=c, c>0$. We call integral of $f$ on $] \boldsymbol{a} ; \boldsymbol{b}$ [ the area of the rectangle defined by the graph of $f$, the $x$-axis, the straight lines with equation $x=a$ and $x=b$. Its value is $c(b-a)$ a.u.


When $c<0$, we agree to define the integral of $f$ on ] $a$; the opposite of the area below : $c(b-a)$, it is an algebraic area, negative in that case.

### 1.2. Stair Function:

For a stair function (constant function by bits), the integral of $f$ on ] $a$; is the algebraic sum of the colored rectangles, counted positively if they're above the $x$-axis, negatively if they're below the $x$-axis.

We denote it $\int_{a}^{b} f(x) d x$, or $\int_{a}^{b} f(u) d u$, or $\int_{a}^{b} f(t) d t \ldots$... notation introduced by Leibniz, in the XVII th century).


### 1.3. Positive continuous function.

Definition: the integral from $a$ to $b$ of $f$, denoted $\int_{\boldsymbol{a}}^{\boldsymbol{b}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d x}$, is the area of the domain bounded by the graph of $f$, the $x$-axis, the straight lines with equation $x=a$ and $x=b$, in area unit. We also talk about the area under the curve from $x=a$ to $x=b$.


Rqe: $\int_{a}^{a} f(x) d x=0$, because the area is the one of a segment line.

## 2-First properties:

2.1. Extended definition:

- In the case of a negative continuous function, if $a<b$, we write : $\int_{a}^{b} f(x) d x=$ $\int_{a}^{b}(-f(x)) d x$, where $-f$ is a positive function.
- For a positive continuous function, and if $a \geq b$, then :

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

2.2. Chasles Law: $f$ is a continuous function on an interval $I$. For all real numbers $a, b, c$ in $I$, we have :

$$
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x
$$

Csq: If $f$ is odd $\int_{-a}^{a} f(x) d x=0$, and if it's even, $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
2.3. Limearity: $f$ and $g$ both continuous functions on $I$, and $\lambda$ a real number. Qfor all real numbers $a$ and $b$ in $I$ we have :

$$
\int_{a}^{b}(f(x)+\lambda g(x)) d x=\int_{a}^{b} f(x) d x+\lambda \int_{a}^{b} g(x) d x
$$

### 2.4. Central point:

$f$ is a continuous function on
$I$. For all real numbers $a, b$ in
$I$, the central point of $f$ on $[\boldsymbol{a} ; \boldsymbol{b}]$ is :

$$
\mu=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$



It is actually the height of the rectangle with base $(b-a)$ which area is equal to the area under the curve of $f$ on $[a ; b]$.

Theorem : For all real numbers $a, b$ in $I$, we can find a real number $c \in] a ; b[$ such that $\int_{a}^{b} f(t) d t=(b-a) f(c)$.
2.5. Inequalities: If for all real number $x$ of $[a ; b]$ we have $f(x)>g(x)$, then $\int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x$.

Csq: If $f$ est bounded on $[a ; b]$, ie $m \leq f(x) \leq M$, then we have :

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

3-Antiderivative:

### 3.1. Definition:

$f$ is a function defined on an interval $I$. An antiderivative of $f$ on $I$ is a differentiable function $F$ such that for all real number $x$ of $I: F^{\prime}(x)=f(x)$.

Theorem : If $F$ and $G$ are both antiderivative of $f$, then we can find a real number $k$ such that : $F(x)=G(x)+k$, for all $x \in I$.

Csq: Given a pair of real numbers $\left(x_{0} ; y_{0}\right)$, there is only one antiderivative of $f$ such that : $F\left(x_{0}\right)=y_{0}$ (boundary condition (initial condition if $t=0$ ), in physics most of the time)

Ex: Find the antiderivative of the following functions satisfying the boundary condition:
(a) $f(x)=x$, and $F(0)=2$
(b) $g(x)=4 x+1$ and $G(1)=-3$
(c) $h(x)=\frac{1}{x^{2}}$ and $H(-1)=0$

## Theorem: $f$ is a continuous function defined over $I, a \in I$.

Then the function defined by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Is the unique antiderivative of $f$ that is equal to 0 for $x=a$.

## Proof!

$>\underline{F}$ is differentiable : Indeed, for $x_{0} \in I$ and $h \neq 0$ we have :

$$
\frac{F\left(x_{0}+h\right)-F\left(x_{0}\right)}{h}=\frac{1}{h}\left(\int_{a}^{x_{0}+h} f(t) d t-\int_{a}^{x_{0}} f(t) d t\right)=\frac{1}{h} \int_{x_{0}}^{x_{0}+h} f(t) d t
$$

We have seen that there is a real number $c$ comprised between $x_{0}$ and $x_{0}+h$ such that $h f(c)=\int_{x_{0}}^{x_{0}+h} f(t) d t$.
Then : $\frac{F\left(x_{0}+h\right)-F\left(x_{0}\right)}{h}=\frac{1}{h} h f(c)=f(c)$.
But, as $f$ is a continuous function, when $h$ tends to $0, c$ tends to $x_{0}$, then $f(c)$ tends to $f\left(x_{0}\right)$.
Therefore : $\lim _{h \rightarrow 0} \frac{F\left(x_{0}+h\right)-F\left(x_{0}\right)}{h}=f\left(x_{0}\right)$ which is a real number. Then $F$ is differentiable at $x_{0}$ and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
$>\underline{F \text { is null at } a: F(a)=\int_{a}^{a} f(t) d t=0 .}$
$>\quad \underline{F}$ is unique : Let's imagine that $G$ is another antiderivative of $f$ null at $a$. Then we have $G(x)=F(x)+k$ for a rel number $k$ and for all $x$ in $I$.

$$
\text { But } G(a)=0=F(a)+k=k
$$

Then $k=0$ and $F=G$. QED.

Csq: The function $x \mapsto \ln x$ is the antiderivative of $\frac{1}{x}$ that is null at 1 on $] 0 ;+\infty[$ :

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

## 4- Evaluating antiderivative:

4.1. Usual functions:

| Function $\boldsymbol{f}$ | Antiderivative $\boldsymbol{F}$ | Intervall $\boldsymbol{I}=\cdots$ |
| :---: | :---: | :---: |
| $a($ constante $)$ | $a x+C$ | $\mathbb{R}$ |
| $x^{n}(n \in \mathbb{Z}-\{-1\})$ | $\frac{x^{n+1}}{n+1}+C$ | $]-\infty ; 0[$ or $] 0 ;+\infty[$ if $n<-1$ |
| $\frac{1}{\sqrt{x}}$ | $2 \sqrt{x}+C$ | $] 0 ;+\infty[$ |
| $\frac{1}{x}$ | $\ln x+C$ | $] 0 ;+\infty[$ |
| $e^{x}$ | $e^{x}+C$ | $\mathbb{R}$ |
| $\cos x$ | $-\cos x+C$ | $\mathbb{R}$ |
| $\sin x+C$ | $\mathbb{R}$ |  |
| $1+\tan ^{2} x=\frac{1}{\cos ^{2} x}$ | $\tan x+C$ | $\pi-\frac{\pi}{2}+k \pi ; \frac{\pi}{2}+k \pi[, k \in \mathbb{Z}$ |

### 4.2. More formulas:

The operations on differentiable functions as well as the definition of an antiderivative lead to the following results :

- If $F$ and $G$ are antiderivatives of $f$ and $g$, then $F+G$ is an antiderivative of $f+g$.
- If $F$ is an antiderivative of $f$ and $\lambda$ is a real number, then $\lambda F$ is an antiderivative of $\lambda f$.

| Function $\boldsymbol{f}$ | Antiderivative $\boldsymbol{F}$ | Remarks |
| :---: | :---: | :---: |
| $u^{\prime} u^{n}(n \in \mathbb{Z}-\{-1\})$ | $\frac{u^{n+1}}{n+1}$ | If $n<-1$, only for $u$ never <br> null on $I$. |
| $\frac{u^{\prime}}{\sqrt{u}}$ | $2 \sqrt{u}$ | $u>0$ |
| $\frac{u^{\prime}}{u}$ | $\ln u(-u)$ | $u>0$ |
| $u^{\prime} e^{u}$ | $e^{u}$ |  |
| $x \mapsto u(a x+b), a \neq 0$ | $x \mapsto \frac{1}{a} U(a x+b)$, | $U$ antiderivative of $u$. |

Example: An antiderivative of $f(x)=x \cos \left(x^{2}\right)$ is $F(x)=\frac{1}{2} \sin \left(x^{2}\right)$.

## 5-Integral calculus:

### 5.1. Link between integral and antiderivative:

Fundamental theorem of calculus: $f$ is a continuous function on an interval $I, F$ an antiderivative of $f$ on $I, a$ and $b$ two real numbers belonging to $I$. Then we have :

$$
\int_{a}^{b} f(x) d x=F(b)-F(a), \text { often denoted }[F(x)] \frac{b}{a}
$$

Ex: An antiderivative of $f(x)=\cos x$ is $f(x)=\sin x$, then :

$$
\int_{0}^{\pi} \cos t d t=[\sin t]_{0}^{\pi}=\sin \pi-\sin 0=0
$$

Ex: Evaluate the following integrals: $\int_{-1}^{2} x^{2} d x, \int_{0}^{2}(2 x+3)^{3} d x$, $\int_{0}^{\frac{\pi}{2}} \sin x \cos ^{2} x d x, \int_{0}^{3} \frac{1}{1+2 x} d x, \int_{-3}^{5} \frac{2}{1+2 x} d x$,

### 5.2. Integration by parts:

Theorem: $u$ and $v$ two derivative functions on an interval $I$, with continuous derivatives, $a$ and $b$ two real numbers in $I$. Then :

$$
\int_{a}^{b} u(t) v^{\prime}(t) d t=[u(t) v(t)] \frac{b}{a}-\int_{a}^{b} u^{\prime}(t) v(t) d t
$$

Proof: $u v$ is a differentiable function and $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$.
So $u^{\prime} v=(u v)^{\prime}-u v^{\prime}$. As $u^{\prime} v, u v^{\prime}$, and $(u v)^{\prime}$ are continuous we have :

$$
\int_{a}^{b} u(t) v^{\prime}(t) d t=\int_{a}^{b}(u v)^{\prime}(t)-u^{\prime}(t) v(t) d t
$$

Using the linearity of the integral :

$$
\int_{a}^{b} u(t) v^{\prime}(t) d t=\int_{a}^{b}(u v)^{\prime}(t) d t-\int_{a}^{b} u^{\prime}(t) v(t) d t
$$

And $u v$ is an antiderivative of $(u v)^{\prime}$ so :

$$
\int_{a}^{b} u(t) v^{\prime}(t) d t=[u(t) v(t)]_{a}^{b}-\int_{a}^{b} u^{\prime}(t) v(t) d t
$$

Example:
$\int_{0}^{1} t e^{t} d t$ has the form $\int_{a}^{b} u(t) v^{\prime}(t) d t$ with $u(t)=t$ and $v^{\prime}(t)=e^{t}$, the functions $u, v, u^{\prime}, v^{\prime}$ being continuous and $u^{\prime}(t)=1, v(t)=e^{t}$.
Then $\int_{0}^{1} t e^{t} d t=\left[t e^{t}\right]_{0}^{1}-\int_{0}^{1} e^{t} d t=e-0-\left[e^{t}\right]_{0}^{1}=e-(e-1)=1$.

Ex: Evaluate the following integrals using integration by parts:
(a) $\int_{1}^{e} x \ln x d x$
(d) $\int_{1}^{e} \frac{\ln x}{x^{2}} d x$
(b) $\int_{1}^{e^{3}} \ln x d x$
(e) $\int_{1}^{\frac{\pi}{4}} e^{x} \cos x d x$. (2IBP)
(c) $\int_{0}^{1} x \sqrt{x+1} d x$

